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Glioma is the most common primary malignant tumor in the brain, accounting for 
nearly 81% of malignant tumors in the brain (1). In the 2016 World Health Organi-
zation (WHO) classification system, gliomas can be graded from level I to level IV 

according to the histopathological and clinical criteria. Low-grade gliomas (LGGs) include 
grades I and II, whereas high-grade gliomas (HGGs) include grades III and IV (2, 3). Patients 
with LGGs may remain indolent for years or progress to glioblastoma (4) and are gener-
ally treated with only surgery and in some cases with radiotherapy (5). For patients with 
HGGs, radiotherapy and/or chemotherapy are usually followed after surgery, which often 
indicates a poor prognosis (6). Although genetic factors play an increasingly important role 
in indicating prognosis and survival (2, 3, 7), false classification could directly cause inappro-
priate treatment, which significantly affects patient outcomes. Hence, precise grading is still 
crucial for therapy planning and progression assessment in patients with gliomas.

The nuclear protein Ki-67 is a reliable biomarker for evaluating the proliferation of tumor 
cells, because it only exists in active phase of the cell cycle. (8). The Ki-67 labeling index (LI) is 
defined as the percentage of Ki-67-positive tumor nuclei of all tumor nuclei (9). The WHO re-
ported that the Ki-67 LI values are below 4% of the mean value for grade II glioma, 5%–10% 

PURPOSE 
We aimed to explore whether multiparametric magnetic resonance imaging (MRI)-based radio-
mics combined with selected blood inflammatory markers could effectively predict the grade 
and proliferation in glioma patients.

METHODS
This retrospective study included 152 patients histopathologically diagnosed with glioma. Strat-
ified sampling was used to divide all patients into a training cohort (n=107) and a validation 
cohort (n=45) according to a ratio of 7:3, and five-fold repeat cross-validation was adopted in 
the training cohort. Multiparametric MRI and clinical parameters, including age, the neutro-
phil-lymphocyte ratio and red cell distribution width, were assessed. During image processing, 
image registration and gray normalization were conducted. A radiomics analysis was performed 
by extracting 1584 multiparametric MRI-based features, and the least absolute shrinkage and 
selection operator (LASSO) was applied to generate a radiomics signature for predicting grade 
and Ki-67 index in both training and validation cohorts. Statistical analysis included analysis of 
variance, Pearson correlation, intraclass correlation coefficient, multivariate logistic regression, 
Hosmer–Lemeshow test, and receiver operating characteristic (ROC) curve.

RESULTS
The radiomics signature demonstrated good performance in both the training and validation 
cohorts, with areas under the ROC curve (AUCs) of 0.92, 0.91, and 0.94 and 0.94, 0.75, and 0.82 for 
differentiating between low and high grade gliomas, grade III and grade IV gliomas, and low Ki-
67 and high Ki-67, respectively, and was better than the clinical model; the AUCs of the combined 
model were 0.93, 0.91, and 0.95 and 0.94, 0.76, and 0.80, respectively.

CONCLUSION
Both the radiomics signature and combined model showed high diagnostic efficacy and outper-
formed the clinical model. The clinical factors did not provide additional improvement in the pre-
diction of the grade and proliferation index in glioma patients, but the stability was improved.
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for grade III glioma, and 15%–20% for grade 
IV glioma (2). The overexpression of Ki-67 
infers poor differentiation and prognosis 
(10). Hence, the accurate preoperative eval-
uation of the Ki-67 LI maybe helpful in treat-
ment decision-making for glioma patients.

Recently, there is a newly emerging area 
in radiology: radiomics, which is realized by 
quantifying image data with advanced im-
age post-processing techniques (11). For tu-
mor radiomics, a complete characterization 
of the tumor is established by feature selec-
tion and high-throughput analysis (12, 13). 
The radiomics analysis of glioma MRI could 
predict the grade and proliferation potency 
in glioma patients (14–16). A study showed 
that multiparametric MRI-based radiomics 
analysis, assisted by T2-weighted imag-
ing, gadolinium-based contrast-enhanced 
T1-weighted imaging and the apparent 
diffusion coefficient (ADC), could help clini-
cians classify gliomas more accurately (17).

 Chronic inflammation, which is part of 
the tumor microenvironment, is associated 
with tumor occurrence and progression (18, 
19). Some blood inflammatory biomarkers, 
such as the neutrophil-lymphocyte ratio 
(NLR), platelet count, and red cell distribu-
tion width (RDW), have been proposed to 
predict the prognosis of tumors (20–22). 
And recent studies showed that the NLR 
and platelet count in glioblastoma patients 
(23, 24) and the NLR and RDW in glioma pa-
tients were significant in predicting prog-
nosis (25).

To our knowledge, there have been no 
studies on MRI-based radiomics combined 
with selected blood inflammatory markers 
to predict the grade and proliferation po-
tency in glioma patients. The purpose of 
this study is to build and assess a radiomics 
nomogram to preoperatively predict glioma 
grade and proliferation potency by incorpo-
rating MRI-based radiomics and clinical sig-
natures, including age, NLR, and RDW.

Methods
The radiological and surgical databases 

were retrospectively reviewed for records 
from 2013 to 2018. This study was approved 
by our institutional ethics committee and 
the requirement for informed consent 
was waived due to retrospective analysis 
(202001). The inclusion criteria for patients 
were: (a) Histopathologically confirmed 
supratentorial glioma except grade I; (b) 
Preoperative craniocerebral MRI including 
T2- and T1-weighted imaging, T2-weighted 
attenuated inversion recovery imaging (T2 
FLAIR) and contrast-enhanced T1-weight-
ed imaging; and (c) patients with Ki-67 LI 
values. Nineteen of these patients were 
excluded because of: treatment (chemora-
diotherapy, chemotherapy or radiotherapy) 
prior to the MRI examination (n=10); and 
poor imaging quality rendering the image 
unqualified for image analysis due to the 
influence of motion or susceptibility (n=9). 
Finally, this study included 152 patients (47, 
39 and 66 patients were diagnosed as grade 
II, III and IV gliomas, respectively). In our 
study, the low expression level of Ki-67 was 
defined as ≤10% positive staining (n=56), 
whereas the high expression level of Ki-
67 was defined as >10% positive staining 
(n=96) (26). Stratified sampling was used 
to divide all patients into a training cohort 
(n=107) and a validation cohort (n=45) ac-
cording to a ratio of 7:3.

MRI protocol 
All included patients were examined 

with a 3.0 Tesla MRI scanner (Trio, Sie-
mens). Axial T2-weighted imaging, T2 
FLAIR, unenhanced and contrast-enhanced 
T1-weighted imaging were performed. The 
acquisition parameters were as follows: 
T2-weighted imaging: slice thickness, 4.5 
mm; intersection gap, 4.5 mm; repetition 
time (TR)/echo time (TE), 7140/98 ms; 
field of view (FOV), 22×22 cm2; pixel ma-
trix, 384×384; acquisition time, 2 min 17 s; 
flip angle, 150˚; T2 FLAIR: slice thickness, 

4.5 mm; intersection gap, 0.45 mm; TR/TE, 
8400/91 ms; FOV, 24×24 cm2; pixel matrix, 
256×256; acquisition time, 2 min 16 s; flip 
angle, 130˚; and T1-weighted imaging: slice 
thickness, 4.5 mm; intersection gap, 0.45 
mm; TR/TE, 220/3 ms; FOV, 22×22 cm2; pixel 
matrix, 256×256; acquisition time, 44 s; flip 
angle, 70˚. A dosage of 0.2 mL/kg gadopen-
tetate dimeglumine was given intravenous-
ly and axial contrast-enhanced T1-weighted 
imaging was acquired.

Volume-of-interest (VOI) segmentation
The T2 FLAIR, unenhanced and con-

trast-enhanced T1-weighted imaging 
were co-registered with reference to the 
T2-weighted imaging using Slicer (version: 
4.10.1, package: Elastix, https://www.slicer.
org). The tumor VOIs covered the most rep-
resentative regions of the gliomas by man-
ual segmentation in the T2-weighted imag-
ing using the ITK-SNAP software (version: 
3.8.0, https://www.itksnap.org). For the VOI 
delineation, the tumor boundaries of non-
enhancing gliomas were determined in 
T2-weighted imaging, because in these tu-
mors hyperintense signals represented the 
tumor regions of gliomas; meanwhile, for 
the enhancing gliomas the most represen-
tative regions were decided in T2-weighted 
imaging with reference to the contrast-en-
hanced T1-weighted imaging to separate 
the parenchymal areas from edematous ar-
eas and avoid the inclusion of obvious cysts, 
necrosis and hemorrhage regions. Then, the 
contours of the VOIs on the T2-weighted im-
aging were copied to images of other MRI 
sequences. The segmentation of the VOIs 
was performed independently by a senior 
neuroradiologist. To verify the consistency 
between readers, the VOIs of 30 randomly 
selected cases were segmented by another 
senior neuroradiologist. The segmentation 
of the VOIs is presented in Fig. 1.

Radiomics features extraction and 
radiomics signature construction

All MRI data underwent image resam-
pling to isotropic voxels (1×1×1 mm) with 
linear interpolate, and intensity normaliza-
tion (Z-score) before feature extraction (27) 
and radiomics features were calculated by 
Artificial Intelligence Kit (AK, version: 3.2.1, 
GE Healthcare). Overall, 396 radiomics fea-
tures were extracted from each sequence 
for each patient, including 42 histogram 
features, 9 form factor features, 144 gray 
level cooccurrence matrix (GLCM) features, 
180 run-length matrix (RLM) features, 11 

Main points

•	 The clinical model included age, neutro-
phil-lymphocyte ratio and red cell distribu-
tion width.

•	 Radiomics analysis is based on multiparamet-
ric MRI, including T2-weighted, T1-weighted, 
T2 FLAIR and contrast-enhanced T1-weight-
ed imaging. 

•	 Among the radiomics features, factors relat-
ed to heterogeneities in T2 FLAIR and con-
trast-enhanced T1-weighted imaging were 
the most important components for predict-
ing between LGGs and HGGs, grade III and 
grade IV, and low Ki-67 and high Ki-67. 

•	 Radiomics was better for differentiating LGGs 
and HGGs, grade III and grade IV gliomas, 
and low Ki-67 and high Ki-67 than the clinical 
model. 

•	 The combination of radiomics and the clini-
cal model could improve the predictive sta-
bility of the grade and proliferation in glioma 
patients.



gray level size zone matrix (GLSZM) features 
and 10 Haralick features.

The interobserver intraclass correlation 
coefficient (ICC) selects values greater than 
0.75, and T2 FLAIR, unenhanced and con-
trast-enhanced T1-weighted imaging and 
T2-weighted imaging had 346, 358, 357, 
and 243 features reserved, respectively. The 
results indicated favorable interobserver 
feature extraction reproducibility. Before 
feature selection, all the radiomics features 
were standardized by the Z-score method. 

Then, feature selection was conducted as 
follows: First, analysis of variance (ANOVA) 
was performed to remove features with 
p > 0.05, followed by the correlation test 
to remove features that had a correlation 
coefficient > 0.9. Next, the least absolute 
shrinkage and selection operator (LASSO) 
model, which could improve prediction ac-
curacy and interpretation (28, 29), was used 
to further select the features. The reserved 
features were applied to construct the ra-
diomics score for every patient.

Assessment of the radiomics score, clinical 
model and radiomics nomogram

The radiomics score, which was derived 
from individual sequences and multipara-
metric MRI, and significant clinical data (age, 
NLR, and RDW) (23–26) were used as poten-
tial predictors for the multivariate logistic re-
gression analysis to build a prediction model 
of the grade and proliferation potency of 
gliomas. The radiomics nomogram was also 
constructed by combining the radiomics 
score derived from multiparametric MRI and 
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Figure 1. a–o. Image acquisition 
and volume-of-interest (VOI) 
segmentation. T2-weighted images 
(a, f, k), T2-weighted attenuated 
inversion recovery images (b, g, 
l), T1-weighted images (c, h, m), 
contrast-enhanced T1-weighted 
images (d, i, n) and tumor region 
(red in T2-weighted images) (e, j, o) 
show VOI segmentation in patients 
with  grade II (a–e), grade III (f–j), and 
grade IV (k–o) glioma.
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clinical factors. The performance of the ra-
diomics score, clinical model and radiomics 
nomogram was evaluated by using a calibra-
tion curve. The radiomics score, clinical mod-
el and radiomics nomogram were applied in 
the validation cohort subsequently by using 
the same formula in the training cohort. Ad-
ditionally, the no-information rate was calcu-
lated in our dataset for comparison with the 
diagnosis accuracy. A simplified flowchart of 
the study is given in Fig. 2.

Statistical analysis 
The LASSO method was utilized in con-

junction with the penalty parameter adjust-
ment and is performed through five-fold 
repeat cross-validation based on the mini-

mum deviation criteria. Backward stepwise 
selection was utilized by dint of the likeli-
hood ratio test, and Akaike’s information 
criterion (AIC) was taken as the stopping 
rule for the multivariate logistic regression.

The accuracy of the radiomics score was 
quantified by the area under the receiver 
operating characteristic (ROC) curve (AUC) 
in both the training and validation cohorts. 
The range of 95% confidence interval was 
used to evaluate the stability of the models. 
The Hosmer–Lemeshow test were used to 
assess the goodness-of-fit and discrimina-
tory ability. ICCs were used to evaluate the 
interobserver agreement.

All the statistical analyses were conducted 
with R software (version 3.5.3; https://ww-

w.r-project.org). The “rms” package was used 
to construct the nomogram. All the reported 
statistical significance levels were two-sided, 
with statistical significance of 0.05.

Results
There were no significant differences in 

age, NLR, RDW, glioma grading, and Ki-67 
expression (p > 0.05) between the training 
and validation cohorts. There were statisti-
cally significant differences in age and NLR 
variables among LGGs and HGGs. The char-
acteristics of all the participants are shown 
in Table 1 and Supplementary Tables 1–3.

The results of the data dimension reduc-
tion with LASSO are shown in Fig. 3a, 3c, 
3e. LASSO with 11, 9, and 12 of the most 
important variables and their coefficients 
are shown in Fig. 3b, 3d, 3f, which indicate 
great diagnostic potential. All the reserved 
features and the best-performing features 
are listed in Table 2. The logistic regression 
models predicted the grade and prolifera-
tion potency of gliomas as shown in the fol-
lowing formulas:

Grade = 1.978 + 0.855 * flair_InverseDif-
ferenceMoment_angle45_offset7 + 0.8286 
* t2_skewness -0.550 * t1c_kurtosis -1.061 
* t1c_uniformity -+ 1.925 * t1c_Inertia_an-
gle90_offset1

Grade34 =0.9185 + 1.8657*t1_skewness 
+ 1.3046 * t2_Range + 2.3632 * t1c_Iner-
tia_angle90_offset1 – 0.9154 * t1c_LowIn-
tensitySmallAreaEmphasis

Ki67 = 1.263 + 1.326 * flair_Correla-
tion_angle0_offset7 + 0.898 * t1_Lon-
gRunEmphasis_angle45_offset1 + 0.673 
* t2_skewness -0.713 * t2_ShortRunHigh-
GreyLevelEmphasis_AllDirection_off-
set4_SD – 0.888 * t1c_kurtosis + 1.346 * 
t1c_Inertia_angle90_offset1 – 0.917 * t1c_
LargeAreaEmphasis

The AUCs of the radiomics score derived 
from multiparametric MRI were signifi-

Table 1. Characteristics of the patients in the training and validation cohorts 

Training cohort (n=107) Validation cohort (n=45)

Grade II Grade III Grade IV Grade II Grade III Grade IV

n 36 28 43 11 11 23

Age (years), mean±SD 44.38±11.31 48.04±12.02 54.46±12.58 40.18±8.85 56.73±10.98 56.83±13.07

NLR, median (Q1, Q3) 2.07 (1.72, 3.22) 2.44 (1.84, 3.51) 2.83 (2.07, 5.14) 1.83 (1.48, 2.9) 3.42 (2.56, 4.4) 3.00 (2.30, 5.4)

RDW, mean±SD 13.1±1.04 13.34±1.05 13.37±1.52 13.21±1.38 12.87±0.58 13.42±0.86

Ki-67 LI, n	 ≤10% 42 14

	 >10% 65 31

SD, standard deviation; NLR, neutrophil-lymphocyte ratio; Q1–Q3, 25th and 75th percentiles; RDW, red cell distribution width; Ki-67 LI, Ki-67 labeling index.

Figure 2. Flowchart of constructing a radiomic nomogram with multiparametric MRI and clinical 
features to predict the glioma grade and proliferation potency. T2WI, T2-weighted imaging; CE T1WI, 
contrast-enhanced T1-weighted imaging; NLR, neutrophil-lymphocyte ratio; RDW, red cell distribution 
width.

Tumor segmentationMultiparametric MRI

Enrolled patients (n=152)

Univarite and multivariate analysis

Radiomics nomogram

Comparison of the three 
models in predicting glioma 
grade and proliferation 
potency

Selection of features 
and radiomics signature 
construction

Radiomics
score

Clinical model
(age, NLR, RDW)

Training cohort
(n=107)

Grade II
(n=47)

Grade IV
(n=66)

Ki-67>10%
(n=96)

Ki-67≤10%
(n=56)

Grade III
(n=39)

Validation cohort
(n=45)

The tumor VOIs were defined in the
T2WI with reference to the CE T1WI
and were copied to images of other
MRI sequences

T2-weighted MRI T2-weighted attenuated
inversion recovery MRI

T1-weighted MRI contrast-enhanced
T1-weighted MRI



cantly higher than those of the models of 
individual sequences in differentiating be-
tween LGGs and HGGs, grade III and grade 
IV glioma, and low Ki-67 and high Ki-67 in 
the training and validation cohorts (Supple-
mentary Fig.). The radiomics score derived 
from multiparametric MRI was significantly 

correlated with glioma grading and Ki-67 
expression (p  <  0.001). In the training co-
hort, the AUCs of the radiomics score for 
differentiating between LGGs and HGGs, 
grade III and grade IV glioma, and low Ki-67 
and high Ki-67 were 0.92, 0.91 and 0.94, re-
spectively, which were significantly higher 

than those of clinical factors, and the De 
Long test p values were all <  0.001. After 
combining the radiomics score and clinical 
factors, the AUCs were 0.93, 0.91 and 0.95, 
respectively (Fig. 4), and all of the De Long 
test p values were <  0.001 compared with 
clinical factors. These results suggested that 
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Figure 3. a–f. Feature selection using LASSO. The tuning parameter (λ) selection in the LASSO model used ten-fold cross-validation with minimum criteria 
and could predict low-grade gliomas (LGGs) and high-grade gliomas (HGGs) (a), grade III and grade IV gliomas (c), and low Ki-67 and high Ki-67 (e). LASSO 
coefficient profiles of texture features could predict LGGs and HGGs (b), grade III and grade IV gliomas (d), and low Ki-67 and high Ki-67 (f).

b

a

f

c

d

e

Figure 4. a–c. The ROC curves show the effectiveness of combining the radiomics score and clinical factors in differentiating between LGGs and HGGs (a), 
grade III and grade IV gliomas (b), and low Ki-67 and high Ki-67 (c) in the training cohort.

a b c
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the performance was best when multipara-
metric MRI and clinical factors were consid-
ered simultaneously.

The calibration curve of radiomics nomo-
gram also showed that the predicted prob-
ability was in good agreement with actual 

probability in the training cohort (Fig. 5). 
The predictive performances of the radio-
mics score, clinical factors and their combi-
nation are shown in Fig. 6. The Hosmer–Le-
meshow test demonstrated no significant 
differences (p = 1.00, p = 0.39, and p = 0.24) 
and indicated no deviation from a perfect 
fit.

In the validation cohort, the findings 
were similar. The radiomics score and com-
bination strategy showed favorable perfor-
mances. The Hosmer–Lemeshow test in-
dicated no significant difference (p = 1.00) 
in differentiating between LGGs and HGGs, 
but significant differences in differentiat-
ing between grade III and grade IV gliomas  
(p = 0.002) and low Ki-67 and high Ki-67  
(p = 0.002). The diagnostic performance of 
the three proposed models is shown in Ta-
ble 3. Additionally, for the measure of class 
imbalance, the no-information rates be-
tween LGGs and HGGs, grade III and grade 
IV glioma, and low and high Ki-67 were 
0.6216, 0.621 and 0.6075 in the training co-
hort and 0.645, 0.645 and 0.689 in the val-
idation cohort, respectively. The radiomics 
and nomogram model prediction accuracy 
all exceeded the no-information rate.

Discussion
This study predicted the grade and pro-

liferation potency in glioma patients by de-
veloping a radiomics nomogram. The mod-
el combined multiparametric MRI-based 
radiomics and clinical factors, including age 
and selected blood inflammatory markers, 
and showed good discriminative ability.

Table 2. Radiomic feature selection results

T2WI T1WI T2 FLAIR CE T1WI

LGGs and HGGs 1 1 3

Skewness Inverse Difference-
Moment_angle45_
offset7

Kurtosis 

Inertia_angle90_ 
offset1 uniformity

Grade III and IV 2 1 5

Percentile95 MinIntensity kurtosis

Range SmallAreaEmphasis

LowIntensity 
SmallAreaEmphasis

Variance

Inertia_angle90_ 
offset1

Low Ki-67 LI and 
high Ki-67 LI

2 1 1 3

Skewness t1_LongRunEm-
phasis_angle45_
offset1

flair_Correlation_
angle0_offset7

t1c_kurtosis

ShortRunHigh-
GreyLevelEm-
phasis_AllDirec-
tion_offset4_SD

Inertia_angle90_off-
set1

t1c_LargeAreaEm-
phasis

T2WI, T2-weighted imaging; T1WI, T1-weighted imaging; T2 FLAIR, T2-weighted attenuated inversion recovery 
imaging; CE T1WI, contrast-enhanced T1-weighted imaging; LGGs, low-grade gliomas; HGGs, high-grade gliomas; 
Ki-67 LI, Ki-67 labeling index.

Table 3. Diagnostic performance of the three proposed models

Different 
models

Training cohort Validation cohort

Sensitivity Specificity Accuracy
AUC  

(95% CI) Sensitivity Specificity Accuracy
AUC  

(95% CI)

Clinical LGGs and HGGs 0.80 0.52 0.62 0.70 (0.59–0.80) 0.64 0.97 0.89 0.82 (0.66–0.99)

Grade III and Grade IV 0.82 0.57 0.66 0.65 (0.51–0.78) 1.00 0.30 0.55 0.60 (0.39–0.80)

Low Ki-67 LI and High 
Ki-67 LI

0.45 0.82 0.67 0.67 (0.56–0.77) 0.43 1.00 0.82 0.72 (0.54–0.90)

Radiomics LGGs and HGGs 0.94 0.85 0.88 0.92 (0.87–0.97) 1.00 0.82 0.87 0.94 (0.87–1.00)

Grade III and Grade IV 0.86 0.89 0.88 0.91 (0.83–0.99) 0.82 0.60 0.68 0.75 (0.57–0.93)

Low Ki-67 LI and High 
Ki-67 LI

0.93 0.83 0.87 0.94 (0.89–0.98) 0.64 0.94 0.84 0.82 (0.69–0.96)

Combined LGGs and HGGs 0.92 0.85 0.87 0.93 (0.89–0.98) 1.00 0.88 0.91 0.94 (0.87–1.00)

Grade III and Grade IV 0.79 0.96 0.89 0.91 (0.83–0.99) 0.73 0.70 0.80 0.76 (0.58–0.94)

Low Ki-67 LI and High 
Ki-67 LI

0.91 0.88 0.89 0.95 (0.91–0.99) 0.86 0.68 0.73 0.80 (0.66–0.94)

AUC, area under the curve; 95% CI, 95% confidence interval; LGGs, low-grade gliomas; HGGs, high-grade gliomas; Ki-67 LI, Ki-67 labeling index.



The conventional presurgical determi-
nation of glioma grades mainly depends 
on conventional MRI techniques, including 
T2- and T1-weighted imaging, T2 FLAIR and, 
particularly, contrast-enhanced T1-weight-
ed imaging. However, conventional MRI 
provides limited information regarding 
glioma grading, and the accuracy is only 
55% to 83%. A study showed that 20% of 
LGGs show contrast enhancement, where-
as a third of HGGs do not show contrast 
enhancement (30). In addition, conven-
tional MRI is unable to evaluate tumor 
proliferation potency. A few studies have 
used advanced MRI sequences, such as 
multi-b-value diffusion-weighted imaging, 
diffusion tensor imaging (DTI), diffusion 
kurtosis imaging (DKI), and dynamic con-
trast-enhanced perfusion imaging (DCE-
MRI), for the grading or proliferation poten-
cy evaluation of gliomas (31–37). Ren et al. 
(31) showed that the heterogeneity index α 
and slow diffusion coefficient derived from 
non-Gaussian diffusion MRI could improve 
the accuracy of glioma grading and predict 
the proliferation level of malignant gliomas. 
Mean diffusivity derived from DTI could also 
be used in grading gliomas, and the ROC 
curve showed a sensitivity of 91.8% (32). It 
has also been reported that DKI is superior 
to DTI in predicting the grade and prolifer-
ation potency, and average kurtosis is sug-
gested to be the best prediction parameter 
(33–36). Jain et al. (37) demonstrated some 
potential advanced MRI parameters for dif-
ferentiating LGGs and HGGs. The sensitivity 
and specificity of the relative cerebral blood 
volume (rCBV) in differentiating LGGs and 
HGGs were 97.22% and 100%, respec-
tively. Additionally, rCBV, volume transfer 
constant (Ktrans) and volume of extravas-

cular extracellular space per unit volume 
of tissue (Ve) were associated with the Ki-
67 LI in HGGs (38). Data analysis based on 
advanced imaging has gained increasing 
attention; however, the time-consuming 
processes and some uncertain results limit 
its fast popularization.

The radiomics score was an independent 
predictor of the grade and proliferation 
potency in glioma patients (39). Wang et 
al. (17) extracted features from T2-weight-
ed imaging, ADC and contrast-enhanced 
T1-weighted imaging sequences. They 
compared the radiomic features of HGGs 
with that of LGGs. Their results showed 15 
features with significant differences be-
tween HGGs and LGGs, and the diagnostic 
efficiency could be improved by combining 
these 15 features (with AUCs of 0.971 and 
0.961 in the training and validation cohorts, 
respectively). This approach indicates that 
multiparametric MRI-based radiomic fea-
tures play an important role in glioma grad-
ing. Cho et al. (40) combined T2-weighted 
imaging, T1-weighted imaging, T2 FLAIR 
and contrast-enhanced T1-weighted im-
aging and used machine learning, feature 
selection techniques and a radiomics ap-
proach for glioma grading. They extracted 5 
significant features that showed an average 
AUC of 0.9400 for the training cohort and 
0.9030 for the validation cohort.

In our study, we performed a radiomics 
analysis based on individual sequences and 
multiparametric MRI, including T2-weight-
ed imaging, T1-weighted imaging, T2 FLAIR 
and contrast-enhanced T1-weighted imag-
ing. The results showed that the radiomics 
score derived from multiparametric MRI was 
superior to that of the models of individu-
al sequences, and in the former the results 

showed that the selected radiomics features 
related to heterogeneities in T2 FLAIR and 
contrast-enhanced T1-weighted imaging 
were the most important components in 
differentiating LGGs and HGGs, grade III 
and grade IV, and low and high Ki-67. The 
reason might be because T2 FLAIR could 
provide more information on edema, and 
contrast-enhanced T1-weighted imaging 
contains more information about blood 
supply, necrosis and blood-brain barrier 
damage due to gliomas, which are related 
with the grading and Ki-67 LI of gliomas. 
Skewness, kurtosis, range, variance, unifor-
mity and percentil95 are first order features 
used to describe the degree of uniform dis-
tribution of signal strength in tumors. Iner-
tia, InverseDifferenceMoment, ClusterProm-
inence, ShortRunHighGrayLevelEmphasis 
and LongRunEmphasis are texture features 
that mainly describe the heterogeneity 
within the tumor, and the heterogeneity 
within malignant tumors is higher. The AUCs 
of the radiomics score were 0.92 and 0.94 in 
the training cohort and validation cohort for 
differentiating LGGs and HGGs, respectively, 
which is consistent with that of a previous 
study (14). In addition, grade III and grade 
IV gliomas could be well differentiated by 
the extracted variables with LASSO, and 
the AUC was 0.91 and 0.75 in the training 
cohort and validation cohort, which is low-
er than that for the differentiation of LGGs 
and HGGs. However, the performance is of 
value in differentiating grade III and grade IV 
gliomas. Due to the differences of prognosis 
and treatment between grade III and grade 
IV gliomas, their classification is essential. 
Even though only a few studies have fo-
cused on differentiating grade III and grade 
IV gliomas, our results were consistent with 
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Figure 5. a–c. Calibration of the radiomics nomogram to predict LGGs and HGGs (a), grade III and grade IV gliomas (b), and low Ki-67 and high Ki-67 (c) in 
the training cohort.

a b c
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those of previous studies (AUCs of 0.881 and 
0.992) (16, 39). However, those studies were 
limited by the lack of an independent vali-
dation cohort.

A previous study investigated the radio-
mic features related to the Ki-67 LI in glio-
mas for tumor proliferation prediction. The 
results showed that the radiomics signa-
ture based on T2-weighted imaging could 
predict Ki-67 LI in LGGs, with accuracies of 
83.3% and 88.6% (AUCs of 0.91 and 0.93) 
in the training and validation cohorts, re-

spectively (40). Su et al. (16) explored the 
diagnostic performance of radiomics based 
on multiparametric MRI, including T1- and 
T2-weighted imaging, T2 FLAIR, contrast-en-
hanced T1-weighted imaging, ADC and arte-
rial spin labeling, for predicting tumor prolif-
eration and found that the AUC was 0.936, 
which is consistent with our results (AUCs of 
0.94 and 0.82 in the training and validation 
cohort, respectively). Hence, multiparamet-
ric MRI-based radiomics could be used to 
predict the proliferation potency of gliomas.

Chronic inflammation is characteristic 
of tumor microenvironment, stimulating 
tumor progression and metastasis. Some 
studies have suggested that peripheral in-
flammatory states, such as the NLR, platelet 
count and RDW, could predict prognosis in 
patients with glioma (23, 24). Auezova et 
al. (25) assessed the association of the NLR, 
platelet count and RDW with tumor grade 
and survival in glioma patients and found 
that only the NLR and RDW was helpful to 
assess progression and outcomes. Weng et 

Figure 6. a–n. The predictive performance of the radiomics score, clinical 
factors and their combination. The bar plots for the training cohort show 
the radiomics scores, clinical factors and their combination for each patient 
categorized by LGGs and HGGs (a–c), grade III and grade IV gliomas (d–f), 
and low Ki-67 and high Ki-67 (g–i). The boxplots show the radiomics scores, 
clinical factors and their combination in training cohort categorized by LGGs 
and HGGs (j), low Ki-67 and high Ki-67 (j), and grade III and grade IV gliomas 
(k). The radiomics nomogram developed in the training cohort with the 
radiomic score, age and red cell distribution width (RDW) of every patient to 
detect LGGs and HGGs (l), grade III and grade IV gliomas (m), and low Ki-67 
and high Ki-67 (n). 
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al. (41) suggested that the combination of 
radiologic biomarkers (including contrast 
enhancement) and peripheral parameters 
such as the NLR could successfully predict 
proliferation potency in glioma patients. 
They found that there were significant cor-
relations between the NLR and tumor grade 
or proliferation potency and between the 
platelet count and tumor grade or prolif-
eration potency, whereas no correlation 
existed between the monocyte-lympho-
cyte ratio (MLR) and grade or proliferation 
potency. However, they assessed the value 
of features from only conventional MRI such 
as contrast enhancement, and radiomics 
based on multiparametric MRI was not in-
cluded. In our study, age, NLR and RDW 
were selected to evaluate the grade and 
proliferation potency in glioma patients. 
The combination of these three clinical fac-
tors was associated with the grade (AUCs 
for differentiating between LGGs and HGGs 
of 0.7 and 0.82 in the training and valida-
tion cohort, respectively; AUCs for differ-
entiating between grade III and grade IV 
gliomas of 0.65 and 0.60 in the training and 
validation cohort, respectively) and prolif-
eration potency (AUCs of 0.67 and 0.72 in 
the training and validation cohort, respec-
tively). Nevertheless, the performance was 
significantly weaker than that of the radio-
mics score.

This study has several limitations. First, 
this is a retrospective evaluation with the 
data collected from a single center. Mul-
ticenter studies with greater sample sizes 
are needed. Second, the advanced MRI 
sequences (such as DWI, DTI or perfusion 
imaging) were not used in this study and 
need to be added in the future. Third, the 
2016 WHO classification includes molecular 
characteristics such as IDH mutation and 
1p/19q codeletion, but these factors were 
not taken into account in our study. There-
fore, molecular markers should be consid-
ered in future studies. Fourth, the sample 
size was relatively limited, and only 39 pa-
tients had grade III gliomas. Therefore, the 
calibration in the validation cohort was not 
optimal. Finally, the prognostic role of the 
radiomics score associated with inflamma-
tion markers was not assessed and needs to 
be validated in the future.

In conclusion, multiparametric MRI-
based radiomics and peripheral inflamma-
tory markers (age, NLR, and RDW) can be 
used to assess the grade and proliferation 
potency accurately for gliomas preopera-

tively and noninvasively. Such a method is 
valuable in designing personalized treat-
ment strategies. 
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Supplementary Table 1. Characteristics of LGGs and HGGs patients in the training and validation cohorts

Training cohort (n=107) Validation cohort (n=45)

LGGs HGGs p LGGs HGGs p

Number 36 71 - 11 34 -

Age

Mean±SD 44.53±11.31 51.93±22.68 0.001 40.18±8.85 56.79±12.27 <0.001

NLR

Median (Q1, Q3) 2.07 (1.72, 3.21) 2.73  (1.97, 4.64) 0.036 1.83 (1.47, 2.89) 3.21 (2.28, 5.12) 0.016

RDW

Mean±SD 13.1±1.04 13.36±1.34 0.161 13.21±1.38 13.24±0.82 0.283

p < 0.05. 
NLR, neutrophil-lymphocyte ratio; RDW, red cell distribution width; LGGs, low-grade gliomas; HGGs, high-grade gliomas.

Supplementary Table 2. Characteristics of Grade III and IV patients in the training and validation cohorts

Training cohort (n=74) Validation cohort (n=31)

Grade III Grade IV p Grade III Grade IV p

Number 28 46 - 11 20

Age

Mean±SD 50.18±13.30 54.72±12.44 0.099 51.27±13.52 26.6±13.25 0.082

NLR

Median (Q1, Q3) 3.04 (2.18, 4.63) 2.8 (2.07, 4.72) 0.608 2.25 (2.18, 2.6) 3.20 (2.35, 6.42) 0.043

RDW

Mean±SD 13.18±1.05 13.26±0.92 0.448 13.28±0.71 13.69±1.94 0.885

p < 0.05.
NLR, neutrophil-lymphocyte ratio; RDW, red cell distribution width.

Supplementary Table 3. Characteristics of low Ki-67 and high Ki-67 patients in the training and validation cohorts

Training cohort (n=107) Validation cohort (n=45)

Low Ki-67 LI High Ki-67 LI p Low Ki-67 LI High Ki-67 LI p

Number 42 65 - 14 31 -

Age

Mean±SD 46.4±12.42 51.6±12.48 0.018 42.86±9.65 57.19±12.73 0.001

NLR

Median (Q1, Q3) 2.22 (1.75, 3.48) 2.51 (2.07, 4.53) 0.127 2.2 (2.34, 5.4) 3.42 (2.34, 5.4) 0.013

RDW

Mean±SD 13.01±0.84 13.44±13.0 0.116 13.17±1.24 13.26±0.84 0.233

p < 0.05.  
NLR, neutrophil-lymphocyte ratio; RDW, red cell distribution width; Ki-67 LI, Ki-67 labeling index.
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Supplementary Figure. a–f. Compared with the individual sequences, the ROC curves showed the effectiveness of the multiparametric MRI in 
differentiating between LGGs and HGGs, grade III and grade IV gliomas, and low Ki-67 and high Ki-67 in the training cohort (a–c) and validation cohort 
(d–f), respectively.
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